

ViSION Project Context

CERN openlab - HP Networking collaboration

- SDN research and development using OpenFlow
- Started in February 2012
- 2 engineers

Initial project goal: Virtual services in OpenFlow networks

- traffic slicing and network virtualization
- overlapping with industry (HP's VAN, NICIRA)

Goal reassessment: traffic orchestration

- Scale-out / optimize resource utilization
- Load balancing

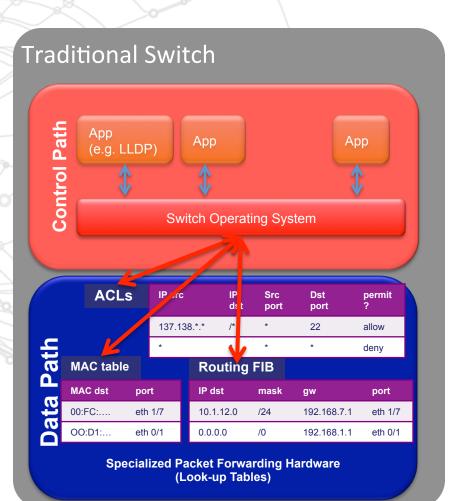
HP openlab collaboration

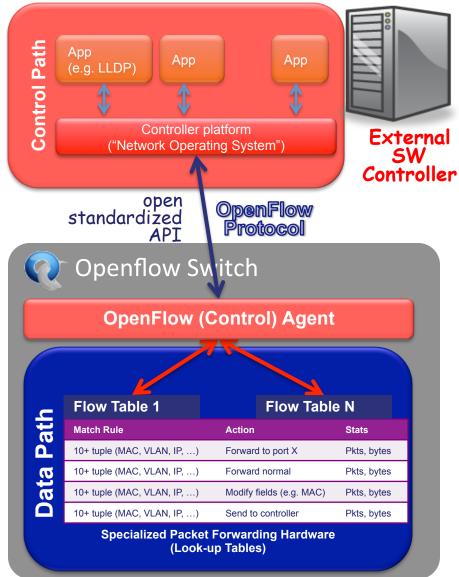
- HP's engagement in openIab phase IV ends with the ViSION project
- In contact with HP for openlab phase V

Software Defined Networking

- OpenFlow in a nutshell
- From traditional networking to SDN
- Protocol, Controller, Switches

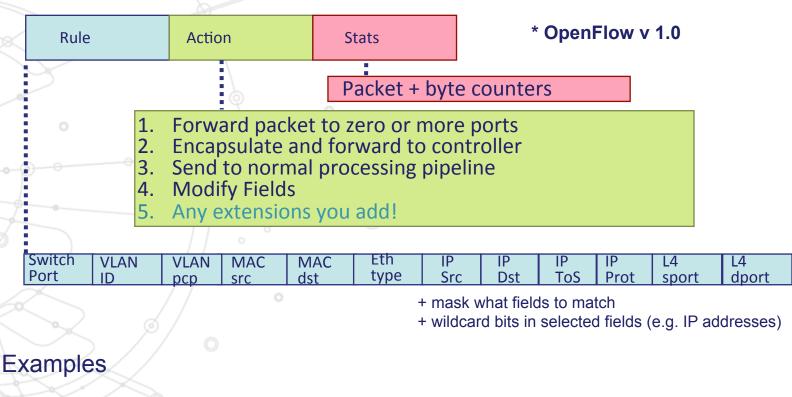
> ViSION traffic orchestrator


- HP SDN Controller ^o
- ViSION Software Stack
 - Core Framework & Balancer
 - Health Monitor
- Regressive Testing
- Development Environment


Wrap-up

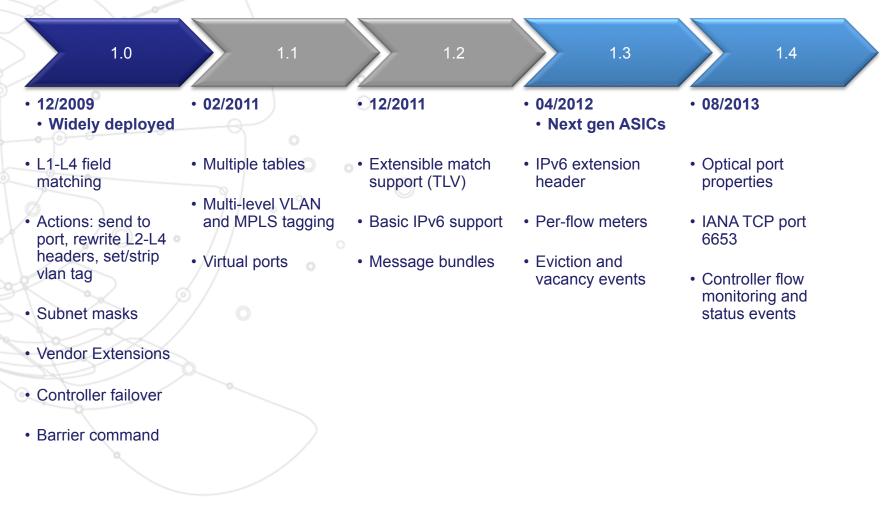
- HPN California
- Project Timeline
- Conclusion

OpenFlow – Decouple Control & Data



S. Stancu - CERN openlab

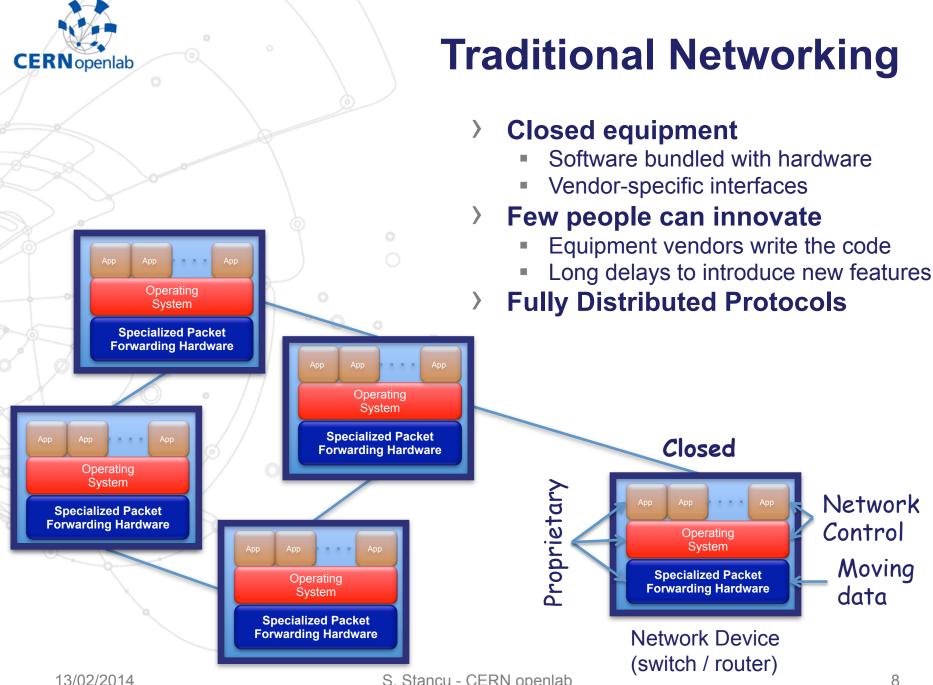
OpenFlow* – Flow Table Entries



Switching	Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
	*	*	00:1f:	*	*	*	*	*	*	*	port6
Routing	Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
	*	* *		*	*	*	5.6.7.8	*	*	*	port6

OpenFlow Evolution

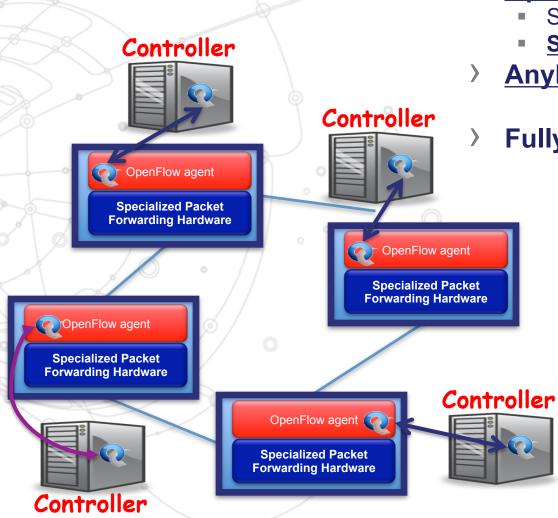
ONF (Open Networking Foundation) is the body maintaining the OpenFlow specs.



Openflow Switches *

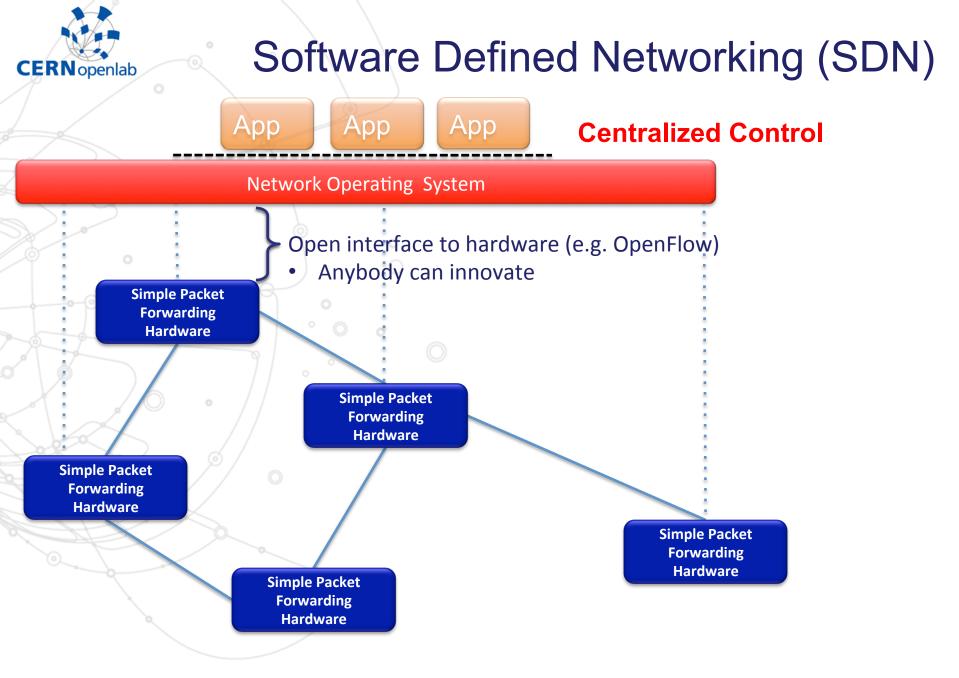
Switch				
5400zl, 8200zl, 6200yl 3500 3500yl, 6600				
MLXe, CER, CES				
Coredirector w/ firmware 6.1.1				
Cat6k, Catlyst 3750, 6500 series				
MX, EX, T-640				
EOS, 7050, 7124FX				
IP8800, PF5240, PF5820				
3240, 3290, 3295, 3780				
Lightswitch 4810				
Z9000, S4810				
LB4G				
X440, x460, x670				
Openflow capable platform				
8264				
7328SO, 7352SO				

* most switches have some of the openflow features implemented in software (forwarding capacity drastically reduced)


13/02/2014

S. Stancu - CERN openlab

Background image: Shutterstock


Traditional Networking ++

> <u>Open</u> equipment

- Software <u>decoupled</u> from hardware
- <u>Standard</u> interface (OpenFlow)
- Anybody can innovate

Fully Distributed Protocols

SDN Open Source Controllers

Functionally Oriented (little or no support for high availability, scaling, etc)

	Language	Examples
	C/C++	NOX, Trema (also Ruby) and MUL
	Java	Beacon, Maestro and Floodlight
	Ocaml	Mirage and Frenetic
	Haskell	Nettle, McNettle and NetCore
	Python	POX, RYU and Pyretic
	JavaScript	NodeFlow (for Node.JS)
1	¢ • / /	0
inte	erprise Grade	
inte	controller	Details
Ente		Details Joint industry effort. Virtually all the big players are contributing members Release v 1.0 (02/2014

SDN Commercial Controllers

Company	SDN Controller				
HP	VAN (Virtual Application Networks) OpenFlow 1.3 support High Availability Infrastructure controller SDN ecosystem				
Big Switch Networks	Big Network Controller				
Cisco Systems	XNC (Extensible Network Controller)				
IBM	Programmable Network Controller				
NEC	ProgrammableFlow Controller				
NTT	Data Virtual Network Controller				
Netsocket	vFlow Controller				
Nicira (VMware)	NVP (Network Virtualization Platform)				
Nuage Networks	VSC (Virtualized Services Controller)				
Plexxi Inc	Plexxi Control				
Pluribus Networks	Netvisor				
Türk Telekom Group	YakamOS				
		* List from sdp. ceptral directory			

* List from sdn central directory

Background image: Shutterstock

Outline

Software Defined Networking

- OpenFlow in a nutshell
- From traditional networking to SDN
- Protocol, Controller, Switches

> ViSION traffic orchestrator

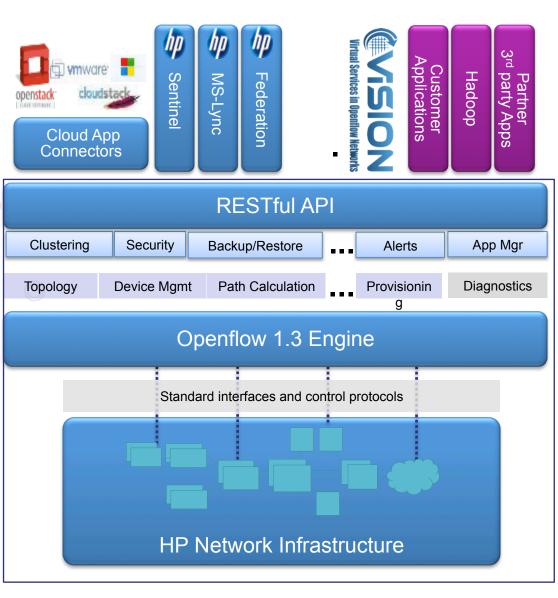
- HP SDN Controller ^o
- ViSION Software Stack
 - Core Framework & Balancer
 - Health Monitor
- Regressive Testing
- Development Environment
- > Wrap-up
 - HPN California
 - Project Timeline
 - Conclusion

13/02/2014

 $\boldsymbol{\Sigma}$

>

HP SDN Controller Overview


Base OpenFlow Controller Appliance

Virtual Appliance deployed as SW on an Industry standard x86 server OpenFlow 1.3 Controller Built-in Network Services Appliance Administration

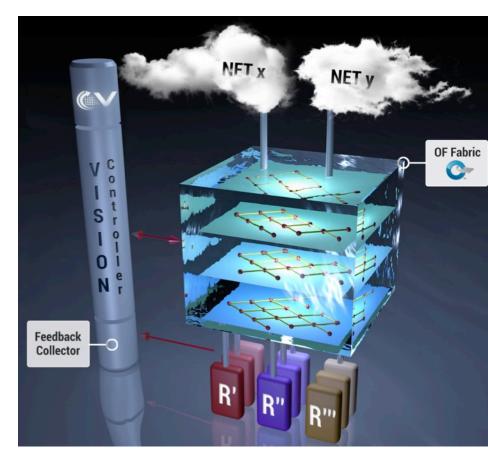
 A Distributed Platform for High-Availability & Scalability
Controller Clustering for Load-Balancing and Fail-Over
Control State Mirroring across cluster for transparent failure recovery

Extensible Platform for SDN Application Developers

- Embedded Java Application Deployment
- > REST APIs
-) GUI

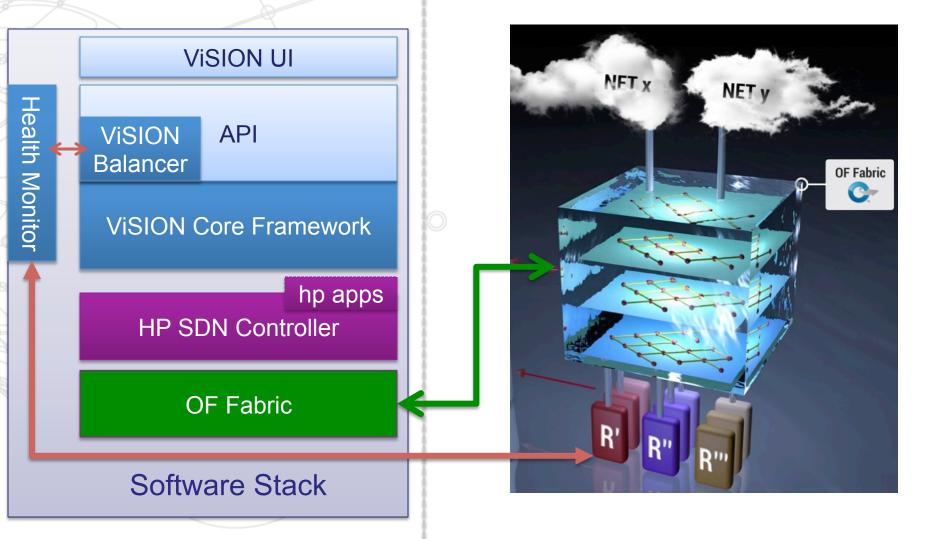
ViSION Traffic Orchestrator

Traffic orchestration

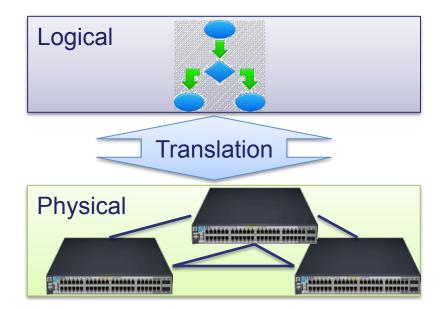

- OpenFlow fabrics interconnect:
 - Client Networks
 - Resource pools
- Vision Controller:
 - "programs" flows through fabrics
 - collects feed-back from resources

OpenFlow fabrics desired functionality:

- (1) Classification
- (2) Load Balancing
- (3) Mirroring
- (4) Fault tolerance


OpenFlow 1.0 limitations

- Classification based on port ranges scales poorly
- Uniform load distribution not straight forward
 - Can't hash on high entropy bits (e.g. lower IP bits)


ViSION Software Stack

ViSION/ Core Framework

- Traffic orchestration decomposition
 - 1. Logical layer: high level user goals
 - 2. Translation layer
 - 3. Physical layer: the OpenFlow fabric

- Core module
 - Implements the first two layers
 - Provides support for redundancy by using multiple links/paths
 - Allows the higher logical layer to focus on traffic orchestration only

Balancer

Net

Balancer

R

R

R

Health

monitor & Traffic statistics

Allocates flows to resources based on

- Resource capacity
- Resource availability ← Health Monitor

Higher level of abstraction

- Deals with the available resources and consumers
- The core implements its decision into the physical OF fabric

Flow allocation

- Static \rightarrow compromise for stateful resource
- Dynamic

High availability

Relocate flows in case a resource becomes unavailable

Agents Agents NFT y NET V **OF Fabric** C 0 RegTest Feedback Manager Collector

Agents

Regression Testing

SDN applications

>

No established validation and troubleshooting methodologies

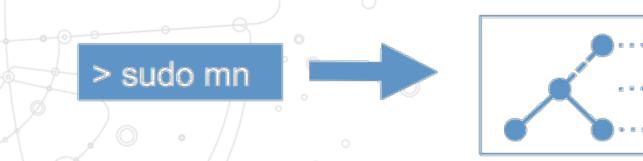
RegTest application

- Manager:
 - Coordinates pools of agents
 - deterministic flows sequence
- Agents
 - Coordinate and monitors flows
 - adapted MGEN to inject traffic

Enables regression testing for > the ViSION traffic orchestrator

13/02/2014

Development Environment


controllers

switches

hosts

Mininet

- <u>http://mininet.org/</u>
 - Realistic virtual network environment
- Real kernel, switch and application code on a single VM

Open vSwitch

- http://vswitch.org/
- Production quality virtual switch, OpenFlow
- Multi-server virtualized environment, development and testing
- Part of Linux kernel as of 3.3
 - default switch in Xen Cloud Platform
 - integrated in OpenStack

Outline

Software Defined Networking

- OpenFlow in a nutshell
- From traditional networking to SDN
- Protocol, Controller, Switches

> ViSION traffic orchestrator

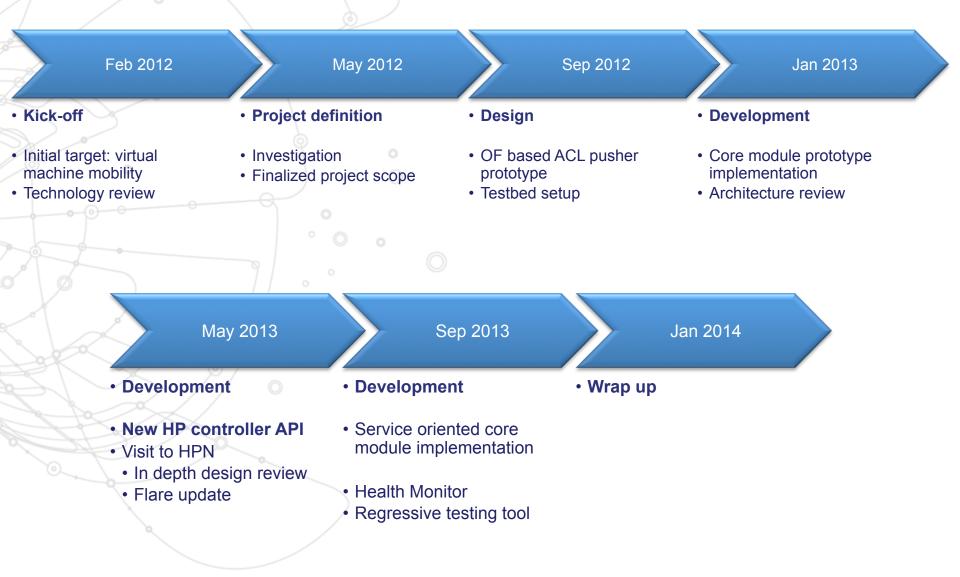
- HP SDN Controller
- ViSION Software Stack
 - Core Framework & Balancer
 - Health Monitor
- Regressive Testing
- Development Environment

Wrap-up

- HPN California
- Project Timeline
- Conclusion

13/02/2014

HPN – California

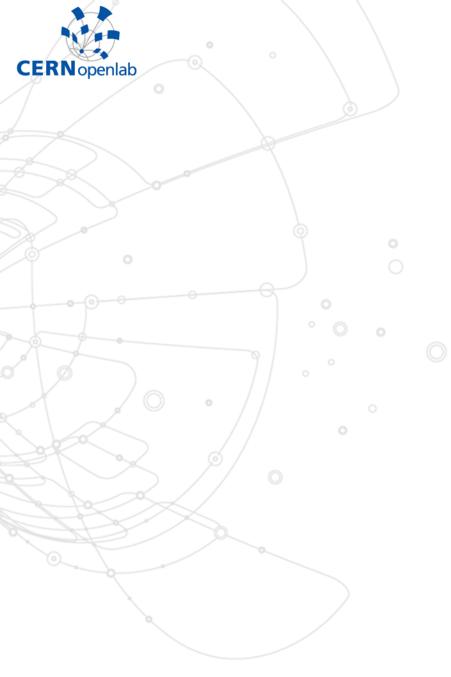

HPN on-site reviews

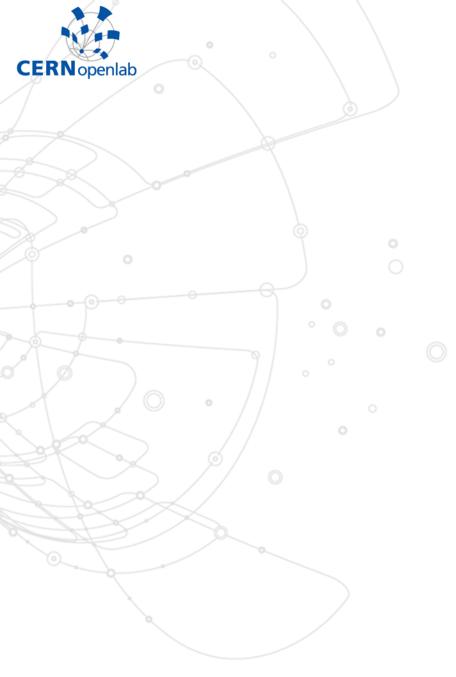
- Architecture
 - Review and approval
 - Knowledge transfer to technology group
 - Implementation technologies assessment
- Implementation
 - Review and feedback
 - Development practices

Brainstorming on applicability/extension to cloud environments

ViSION Project Timeline

Conclusion


The ViSION core framework offers a platform for implementing traffic orchestration


Outlook – CERN and HP to assess technology applicability

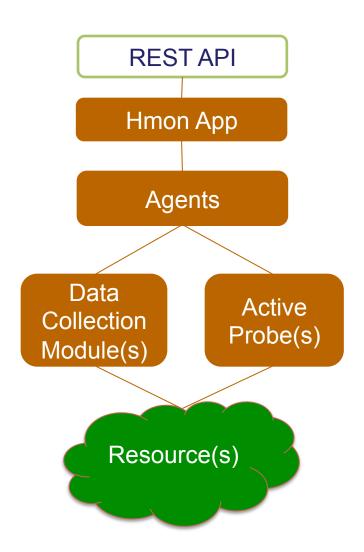
- CERN scaling firewall system and datacenter flow optimization
- HP leverage the solution and know-how to expand the SDN platform.

Acknowledgements

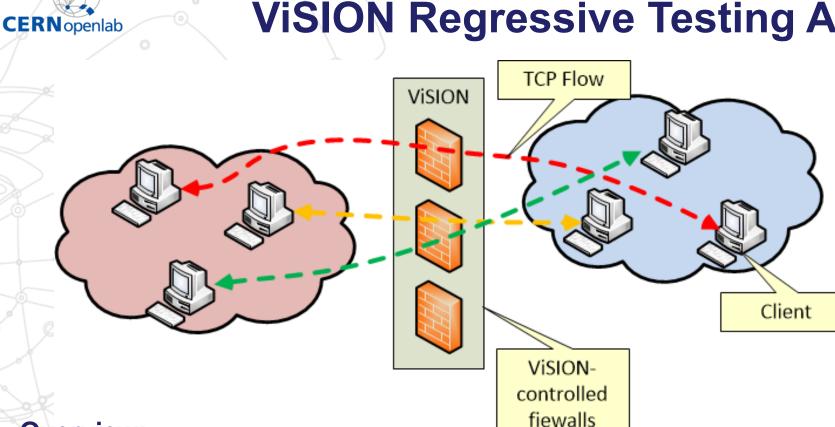
- Thankful to HP for the excellent collaboration
 - Benefited from their pioneering experience in OpenFlow/SDN
- Thank you to IT-CS for their support, advice and technical feedback



ViSION - HP SDN Framework



ViSION/ Health Monitor Module


- Real-time resource status information
- Flexible module system
- Multi-module data aggregation per agent
- Custom agent configuration

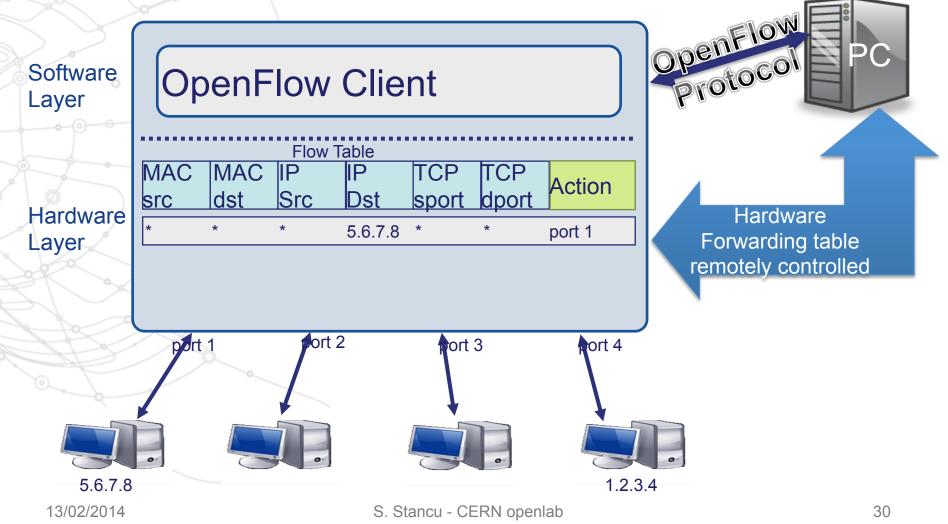
Current modules:

- SNMP
- Ping
- HTTP Web Request
- LinkProbe via OF packet injection

ViSION Regressive Testing App

Overview:

- adapted mgen used for traffic injection
- agent application to coordinate and monitor a machine's flows
- manager application to coordinate a pool of agents


Status:

- prototype, not yet finalized
- summer student involvement

OpenFlow Example

Controller

OpenFlow Features Matrix

Specification	1.0.0	1.1.0	1.2	1.3.0
Widely de-	Yes	No	No	No
ployed				
Flow table	Single flow	Multiple	Multiple	Multiple
	table	flow tables	flow tables	flow tables
MPLS	No	Yes	Yes	Yes, bottom
matching				of stack bit
				added
Group table	No	Yes	Yes	Yes, more
				flexible
				table miss
				support
IPv6	No	No	Yes	Yes, new
support				header field
				added
Simultaneous	No	No	Yes	Yes,
communi-				auxiliary
cation with				connections
multiple				enabled
controllers				

Openflow Evolution

0.2 (Mar 2008) 1.0 (Dec 2009):

match: input port, vlan, mac, ip, transport ports; actions: port ouput, set/strip vlan, set mac, ip, transport ports; slicing (multiple queues per output port); flow cookie; datapath description; match on ip in arp packets; port stats; TLS controller communication; explicit IP fragmentation; subnet masks; IN_PORT; port and link status events; vendor extensions; spanning tree access; modify actions in existing flows; ICMP match; controller failover; barrier command; emergency flows for controller lost handling; VLAN priority match.

1.1 (Feb 2011):

Multiple tables; port groups; multi-level VLAN and MPLS tagging; virtual ports (lag, tunnel); controller connection failure.

1.2 (Dec 2011):

- extensible match support (TLV); basic ipv6 support; controller role change mechanism, message bundles.

1.3 (Apr 2012):

Flexible capabilities negotiations and table miss support; ipv6 extension header; per-flow meters; per connection event filtering; auxiliary connections; MPLS BoS match; tunnel-id metadata (e.g. GRE); packet-in cookies; eviction and vacancy events.

1.4 (Aug 2013):

 Optical port properties; controller flow monitoring and status events; synchronized tables; IANA TCP port 6653 for Openflow.

Technologies

Open vSwitch

- http://vswitch.org/
- Production quality virtual switch, openflow, vlan isolation, qos, monitoring, automated control (e.g. multi-server virtualized environment, development and testing etc)
- Part of linux kernel as of 3.3, the default switch in Xen Cloud Platform, integrated in Openstack etc

Openflow reference

http://archive.openflow.org/wp/downloads/

NOX -> POX

- http://www.noxrepo.org/pox/about-pox/
- C/ Phython openflow controller

Beacon -> Floodlight

https://openflow.stanford.edu/display/Beacon/Home

Nodeflow (js, node.js)

http://garyberger.net/?p=537

Routeflow

https://sites.google.com/site/routeflow/

Oflops

>

- http://archive.openflow.org/wk/index.php/Oflops
- Controller to benchmark openflow switches

RYU SDN framework, python

http://www.osrg.net/ryu/

Flowvisor , network slicing

https://github.com/OPENNETWORKINGLAB/flowvisor/wiki

STS, SDN Troubleshooting Simulator

http://ucb-sts.github.io/sts/

http://yuba.stanford.edu/~casado/of-sw.html 13/02/2014

ONF Members

13/02/2014

S. Stancu - CERN openlab